Emotion Recognition from Speech Signals using Fractal Features
نویسندگان
چکیده
In early research the basic acoustic features were the primary choices for emotion recognition from speech. Most of the feature vectors were composed with the simple extracted pitch-related, intensity related, and duration related attributes, such as maximum, minimum, median, range and variability values. However, researchers are still debating what features influence the recognition of emotion in speech. In this paper, we propose a new method to recognize the emotion from speech signals using fractal dimension features. The fractal feature indicates the non-linearity and self-similarity of a speech signal. For classification and recognition purposes we used the Support Vector Machine technique. In our experiment, a standard database, the Berlin Emotional Speech Database is used as input to measure the effectiveness of our method. By using these features, the obtained results indicated our approach has provided a recognition rate approximate 77%.
منابع مشابه
Speech Emotion Recognition Using Scalogram Based Deep Structure
Speech Emotion Recognition (SER) is an important part of speech-based Human-Computer Interface (HCI) applications. Previous SER methods rely on the extraction of features and training an appropriate classifier. However, most of those features can be affected by emotionally irrelevant factors such as gender, speaking styles and environment. Here, an SER method has been proposed based on a concat...
متن کاملA study on the Emotion Recognition from Speech Signals Using Fractal Dimension Features
In early research the basic acoustic features were the primary choices for emotion recognition from speech. Most of the feature vectors were composed with the simple extracted pitch-related, intensity related, and duration related attributes, such as maximum, minimum, median, range and variability values. However, researchers are still debating what features influence the recognition of emotion...
متن کاملClassification of emotional speech using spectral pattern features
Speech Emotion Recognition (SER) is a new and challenging research area with a wide range of applications in man-machine interactions. The aim of a SER system is to recognize human emotion by analyzing the acoustics of speech sound. In this study, we propose Spectral Pattern features (SPs) and Harmonic Energy features (HEs) for emotion recognition. These features extracted from the spectrogram ...
متن کاملA Database for Automatic Persian Speech Emotion Recognition: Collection, Processing and Evaluation
Abstract Recent developments in robotics automation have motivated researchers to improve the efficiency of interactive systems by making a natural man-machine interaction. Since speech is the most popular method of communication, recognizing human emotions from speech signal becomes a challenging research topic known as Speech Emotion Recognition (SER). In this study, we propose a Persian em...
متن کاملSpeech Emotion Recognition Based on Power Normalized Cepstral Coefficients in Noisy Conditions
Automatic recognition of speech emotional states in noisy conditions has become an important research topic in the emotional speech recognition area, in recent years. This paper considers the recognition of emotional states via speech in real environments. For this task, we employ the power normalized cepstral coefficients (PNCC) in a speech emotion recognition system. We investigate its perfor...
متن کامل